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Abstract

The properties of various CrxNy films grown by direct current (DC) reactive sputtering process with different

values of nitrogen partial pressures (0, 2×10-4, 3.5×10-4 and 5×10-4 mbar) were studied. The structural anal-
ysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM),
while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying
nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was

produced. TEM analysis showed that at pN2
= 2×10-4 mbar the layer has dense microstructure. On the other

hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The
optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or com-
bined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are
strongly dependent on the dominant phase formation (Cr, Cr2N, CrN) during the deposition process. Finally,
the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.
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I. Introduction

Transition metal nitrides exhibit highly covalent

bonds in simple, usually cubic structures, which give

them an extreme hardness, high corrosion and oxi-

dation resistance and excellent mechanical and high-

temperature stability [1–4]. Due to their excellent tri-

bological characteristics, they have become important

materials for cutting tools and wear applications, as

diffusion barriers in microelectronics, and as corrosion

and abrasion-resistant coatings on optical and mechan-

ical components [5]. TiN and CrN are the most exten-

sively investigated hard coatings. Besides its good me-

chanical properties TiN is not always corrosion resis-

tant due to the presence of micro defects in the layers,

while dense microstructure of CrN provide high wear

and corrosion resistance [6]. Much research is being

conducted to study growth and properties of CrN film

deposited by CVD and PVD methods [7]. Nevertheless

PVD methods, such as unbalanced magnetron sputter-

ing, metal vapour vacuum arc, RF reactive sputtering,

∗Corresponding author: tel/fax: +381 11 630 8425,

e-mail: mnovakov@vinca.rs

pulsed DC magnetron sputtering, arc discharge etc., are

quite common for the deposition of CrN films, whereas

CVD methods are not as popular.

In physical vapour deposition chromium-nitride films

can grow in form of cubic CrN or hexagonal Cr2N

phases, with Cr2N phase exhibiting a higher hardness.

On the other hand, the CrN phase is also interesting

due to its magnetic, optical and electronic properties,

in the recent studies being reported as a semiconductor

material [8,9]. For sputtered thin films, process parame-

ters such as gas partial pressure, bias voltage, tempera-

ture, and growth rate strongly influence the film prop-

erties. By controlling the partial pressure of nitrogen

during reactive sputtering it is possible to produce films

ranging in composition from the pure Cr through Cr2N-

CrN mixtures to pure CrN as the amount of nitrogen

is increased [10]. The composition and growth param-

eters influence the microstructure, optical and electrical

properties of the resulting materials. Although the mi-

crostructural features of CrN and Cr2N have been stud-

ied previously [10–12] low attention was given to their

optical properties and electronic structure and their cor-

relation to the process parameters during the deposition.
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In this work the microstructure, optical and electri-

cal properties of various CrxNy coatings were studied.

We investigate the effect of the nitrogen partial pres-

sure on the phase formation (Cr, Cr2N, CrN) and, sub-

sequently, on the properties of the produced coatings.

Chemical composition of the layers was identified by

Rutherford backscattering spectrometry (RBS), while

X-ray diffraction (XRD) and transmission electron mi-

croscopy (TEM) were used for the structural character-

ization and the phase identification. The optical prop-

erties were determined by spectroscopic ellipsometry

(SE), SE data being analysed with the Bruggeman Ef-

fective Medium Theory (BEMT) [13]. We showed that

spectroscopic ellipsometry can be used as an alternative

technique for phase identification of single-phases (Cr,

Cr2N and CrN) and their volume fractions in the lay-

ers. Using the Drude and combined Drude-Tauc Lorentz

model [13–15], we defined the optical constants (refrac-

tive index n and extinction coefficient k) of the layers.

We found that both optical and electrical properties of

CrxNy layers are strongly determined by the growing

phase.

II. Experimental

CrxNy films used in the present experiments were

deposited by means of DC reactive ion sputtering in

a Balzers Sputtron II system. The layers were grown

on commercial Si(100) wafers. The substrates were

cleaned by standard HF etching and dip in deionized

water before being mounted into the deposition cham-

ber. Then, they were ion etched for 2 minutes in Ar

atmosphere at a pressure of 1×10-3 mbar and a nega-

tive bias voltage of 1 kV applied to the substrate holder.

The base pressure prior to sputtering was approximately

5×10-6 mbar. Sputter deposition was performed using

a Cr target (99.9%) in a mixed Ar (99.999%) and N2

(99.999%) discharge. During deposition, the argon par-

tial pressure was initially set to 1×10-3 mbar and the re-

active gas, i.e. N2, was subsequently added to obtain

the desired gas composition. The nitrogen partial pres-

sure was set either to 2×10-4, 3.5×10-4, or 5×10-4 mbar.

The layers were grown at room temperature (RT), at a

rate of ∼10 nm/min, to a total thickness of 240–280 nm.

The pure Cr film (pN
2
= 0 mbar), with the thickness of

∼220 nm was also deposited. The thicknesses of the de-

posited structures were measured with a profilometer

and confirmed by TEM.

For RBS (Rutherford backscattering spectrometry)

analysis we used a 900 keV He2+ ion beam, generated

by the IONAS facility in Göttingen [16]. We collected

random RBS spectra at normal incidence to the sam-

ple surface with two detectors, positioned at 165° scat-

tering angle in ibm geometry. The experimental spectra

were fitted by using the Data Furnace code [17]. Trans-

mission electron microscopy was done on a Philips EM

400T microscope operated at 120 keV, the samples be-

ing prepared for cross-sectional analysis by standard

technique of ion beam thinning. Bright-field contrast

imaging was done, and we also used micro-diffraction

(MD) analysis to study the crystalline structure of the

samples. XRD measurements were carried out at normal

and grazing incidence on a standard Bruker D8 Diffrac-

tometer with parallel beam optics using Cu Kα diffrac-

tion patterns. Angle 2θ was scanned in the range from

30° to 70° with step of 0.02°, in time sequence of 10 s.

SE data were obtained using HORIBA-Jobin

Yvon variable angle spectroscopic ellipsometer (model

UVISEL 5) equipped with DeltaPsi 2 data analysis soft-

ware [18]. The ellipsometer consisted of a light source,

a monochromator, a photoelastic modulator, collimating

optics, polarizing elements, a sample holder, and a de-

tector. Simultaneously, the system acquired a spectrum

ranging from 0.6 to 4.8 eV with 0.1 eV intervals. Ac-

quisition time per each point was 200 ms. SE measure-

ments were taken using 1 mm spot size and at an angle

of incidence of 70°. We also measured sheet resistance

of the samples with a four point probe, the values being

calculated in specific resistivity to compare the results.

III. Results and discussion

3.1. Composition and microstructure

In general, elemental composition measurements car-

ried out by RBS on chromium-nitride samples revealed

homogeneous Cr and N concentrations over the whole

depth of the layers, which was shown in our previous pa-

per [19]. For illustration, the Cr concentration profiles

in CrxNy layers, as deduced by means of the WiNDF

code from the experimental RBS spectra were presented

in Fig. 1. The layers have different thickness, but we

can see uniform Cr depth profiles. The presented spec-

tra clearly show that the nitrogen partial pressure deter-

mines the composition of the deposited layers, which

is manifested in the decrease of the Cr concentration

with the increase of the N2 partial pressure. More pre-

cise insight into the layers composition can be revealed

Figure 1. Cr depth profiles in CrxNy films deposited at

different nitrogen partial pressures (0, 2×10-4,
3.5×10-4 and 5×10-4 mbar)
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Table 1. Chromium nitride thin film compositions obtained
from RBS analyses (the films were deposited under the

different values of nitrogen partial pressure, pN
2

)

Sample S-1 S-2 S-3 S-4

pN
2

[mbar] 0 2×10-4 3.5×10-4 5×10-4

Cr [at.%] 100 73 61 51

N [at.%] 0 27 39 49

by observing the extracted Cr/N ratios for the deposited

layers, presented in Table 1. Sample S-1 corresponds to

the pure Cr coating, having 100 at.% of chromium, since

it was deposited with no flow of nitrogen in the cham-

ber. The extracted Cr/N ratios for the lower nitrogen par-

tial pressures of 2×10-4 mbar and 3.5×10-4 mbar, clearly

showed that the metal-to-nitrogen ratio is ∼73/27 and

∼61/39, respectively, hinting the formation of nonstoi-

chiometric Cr2N phase. The sample S-4 deposited at the

highest nitrogen pressure (5×10-4 mbar) lead to near sto-

ichiometric composition of Cr/N, with the mean atomic

composition of Cr51N49. This is an indication that under

these conditions the pure CrN phase is formed.

Figure 2 shows XRD spectra taken from the sam-

ples S-2 and S-3, deposited at nitrogen partial pres-

sure of 2×10-4 and 3.5×10-4 mbar, respectively. These

data indicate that different phases are present in the

layers. At low nitrogen partial pressure of 2×10-4 mbar

the film S-2 contains a mixture of Cr, Cr2N and CrN

phases. When the nitrogen partial pressure is increased

to 3.5×10-4 mbar (the sample S-3) again the mixture of

Cr + Cr2N + CrN was formed, with larger amount of

Cr2N phase, which is visible through the appearance of

new peaks at around 68°. In both spectra the peaks are

overlapped due to their large width, indicating very fine-

grained structure of the layers. Figure 3 shows XRD

spectrum corresponding to the sample S-4 deposited at

5×10-4 mbar of nitrogen. Well defined diffraction pat-

tern of the pure fcc CrN phase was obtained, with

strong (111) preferred orientation and weaker peaks

Figure 2. XRD spectra of CrxNy layers deposited at nitrogen

partial pressure of: 2×10-4 mbar (S-2, black line)
and 3.5×10-4 mbar (S-3, grey line)

Figure 3. XRD pattern of CrN coating deposited at nitrogen
partial pressure of 5×10-4 mbar

along (200) and (220) planes, in accordance with mini-

mization of the overall energy of the film. This result is

in good agreement with Lu et al. [20] who found that the

deposited CrN films exhibit a (111) texture. The XRD

reflections of CrN film are shifted to lower angular val-

ues than expected, which is typical for in-plane com-

pressed d-metal nitrides [13,14]. The deduced lattice pa-

rameter of 0.4183 nm found to be in the range of the

values characteristic for polycrystalline CrN films: a0 =

0.4133–0.4185nm [3,21]. The average grain size of the

CrN films, estimated from the FWHM of the XRD lines

using the Scherrer’s formula, was found to be 14±2 nm.

Figure 4 shows typical cross-section TEM images

of CrxNy thin films deposited under different nitrogen

partial pressures. One sees that nitrogen pressure dur-

ing deposition have significant influence on the mi-

crostructure of the layers. Bright-field image of the S-

2 layer deposited at the lowest nitrogen partial pressure

of 2×10-4 mbar exhibit a dense morphology, as shown

in Fig. 4a. With increasing pN
2

to 3.5×10-4 mbar (Fig.

4b) the microstructure is less compact with an indica-

tion of columnar growth. Diffraction rings on the cor-

responding MD patterns for both low-nitrogen-pressure

layers are blurred and reveal no obvious phases. This

is the consequence of two effects: i) the presence of

more than one phase and ii) the formation of very small

crystalline grains. This is supported by interpretation of

corresponding XRD spectra, which showed fine-grained

mixture of Cr, Cr2N and CrN phases. When the nitrogen

partial pressure was increased to 5×10-4 mbar (Fig. 4c)

a pronounced columnar structure of the layer is obvi-

ous. Columnar growth is present throughout the whole

film thickness, with the columns width of few tens of

nanometers. The corresponding MD pattern reveals ob-

vious CrN phase. The first three rings belong to (111),

(200) and (220) CrN phase, while the outer rings cor-

respond to higher indexed planes of this phase. The

changes in the morphology of the growing film dur-

ing deposition were investigated by Hones et al. [22]
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Figure 4. TEM images and corresponding MD patterns of CrxNy thin films as a function of nitrogen partial pressure:

a) 2×10-4 mbar, b) 3.5×10-4 mbar and c) 5×10-4 mbar

on different nitride thin films deposited by RF reactive

magnetron sputtering. They revealed that a significant

fraction of the Cr+ ions exhibits a high flux and kinetic

energy if the nitrogen partial pressure pN
2

is low. These

high-energy ions effectively bombard the growing film

and a densely packed morphology results. In contrast,

in an absence of a significant amount of high-energy

ions at higher pN
2
, the authors observed columnar crys-

tal morphology.

3.2. Optical analyses

Optical properties of CrxNy films were studied by SE

(spectroscopic ellipsometry), which is non-destructive,

surface-sensitive technique determining the complex di-

electric function ε(ω) of the materials. Figure 5 shows

the real (εr) and the imaginary (εi) parts of dielectric

functions obtained from CrxNy films deposited under

different values of nitrogen partial pressure.

The dielectric functions of CrxNy films were anal-

ysed through appropriate modelling, using the following

points:

• One-layer model was used for each sample since

these layers are optically thick.

• The pure Cr layer was modelled with Cr, while

the other layers were modelled as a mixture of Cr,

Cr2N and CrN phases, by using the Bruggeman ef-

fective approximation. In BEMT any complex ma-

terial is considered to consist of randomly mixed

regions of pure constituent materials (Cr, Cr2N,

CrN); then, the dielectric function of complex ma-

terial can be described by the dielectric functions

of the constituent materials and the corresponding

volume fractions.

• The dielectric function for the pure Cr layer was

modelled using the Drude oscillator model, which

is commonly used for metal systems and well de-

scribes metallic character due to the intraband tran-

sitions of free conduction electrons. The analysis

of other samples was made by Drude term and

Tauc-Lorentz oscillator (DTL model) described

in literature [23], where Tauc-Lorentz model de-

scribes the interband transitions due to valence

Figure 5. Real (ε1) and imaginary (ε2) part of the dielectric
function of CrxNy thin films deposited at different nitrogen

partial pressures (continuous lines correspond to the fits
obtained by models described in the text)

electrons. A special feature of materials with con-

duction electrons is the plasma frequency ωp,

which is correlated with the conduction electron

density. Therefore,ωp can be used to determine the

metallic or semiconducting character of the CrxNy

films. Another important parameter is the damp-

ing factor ΓD. This parameter is proportional to the

collision frequency which can be related to the col-

48
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lision processes between the free charge carriers

and defects and hence give us information about

the crystalline order in the system.

The fitting results of different CrxNy films, obtained

by using above mentioned modelling, are shown in Fig.

5. The volume fractions of different phases obtained by

BEMT analysis are listed in Table 2. The four presented

layers exhibit different composition, crystal structure

and optical properties and correspond to Cr (pN
2
=

0 mbar), mixed Cr + Cr2N + CrN (pN
2
= 2×10-4 and

3.5×10-4 mbar) and CrN (pN
2
= 5×10-4 mbar). Accord-

ing to the raw spectra, the pure Cr have εr < 0, indi-

cating metallic character of the layer. Similar behaviour

was observed for samples S-2 and S-3 deposited at ni-

trogen pressure of 2×10-4 and 3.5×10-4 mbar, respec-

tively. On the other hand, the layer S-4 deposited at

5×10-4 mbar of nitrogen shows quite different behaviour

having εr > 0. The results of the BEMT analysis show

the variation of the constituent phases (Cr, Cr2N and

CrN) with the increase of nitrogen partial pressure. We

identify three distinct regions where different phases

dominate. For pN
2
= 0 there is no nitrogen incorpora-

tion in the layer and the pure Cr phase is formed. In the

range of 2×10-4 mbar ≤ pN
2
≤ 3.5×10-4 mbar primarily

formed phase is Cr2N, with different content of Cr and

Table 2. The volume fractions ( f i) of the constituent phases
(Cr, Cr2N, CrN) in various CrxNy layers grown at different

values of nitrogen partial pressure

Sample S-1 S-2 S-3 S-4

pN
2

[mbar] 0 2 3.5 5

fCr [%] 100 21 ± 1 1 ± 1 -

fCr2N [%] - 69 ± 1 86 ± 1 -

fCrN [%] - 10 ± 1 13 ± 1 100

Figure 6. The calculated refractive index (n) and extinction
coefficient (k) for CrxNy thin films deposited at partial

pressure of nitrogen of 2×10-4, 3.5×10-4 and 5×10-4 mbar
compared to the corresponding n, k curves for

the pure CrN and Cr2N [24]

CrN. For pN
2
= 2×10-4 mbar the film consists of 70% of

Cr2N, 20% of Cr and 10% of CrN. When the nitrogen

partial pressure is increased up to pN
2
= 3.5×10-4 mbar,

Cr2N becomes predominant phase in the layer with the

volume fraction of 86%. Finally, for pN
2
= 5×10-4 mbar

a pure CrN is formed. These results are in a good agree-

ment with RBS and XRD findings.

Based on the results for the best-fit DTL parameters

we calculated the refractive index n and extinction co-

efficient k in the energy region of 0.6–4.8 eV. Figure 6

shows the calculated n and k of the layer deposited at

pN
2
= 5×10-4 mbar (the pure CrN) and the layers de-

posited at pN
2
= 2×10-4 and 3.5×10-4 mbar, containing

predominantly Cr2N phase. The solid and dashed lines

represent the n, k values for the pure Cr2N and CrN, re-

spectively, reported by Aouadi et al. [24]. One can see

that optical constants of our CrN layer quite well match

with the one from the literature. Slightly smaller abso-

lute values of refraction index in the whole energy range

means that it is optically less dense as compared to the

referent layer. As for the layers deposited at lower ni-

trogen partial pressures corresponding n and k versus

photon energy shows different slopes, where the values

for pN
2
= 3.5×10-4 mbar is in a good agreement with

the literature values [24]. If one knows that these layers

have different content of Cr2N phase, namely 70% and

86% for pN
2
= 2×10-4 mbar and pN

2
= 3.5×10-4 mbar,

respectively, it is concluded that even small change in

the layer’s composition influences its optical constants.

Thus, establishing of an optical database for the Cr–N

system enables us to easily identify different chromium-

nitride phases (Cr2N, CrN) and control their purity by

monitoring the optical properties (based on SE data) of

the layers.

The results of the DTL model fits can also determine

the evolution of the transport properties of CrxNy’s con-

duction electrons. Figure 7 shows the ωp and ΓD values

calculated from the Drude term of the DTL model. The

discrimination of the various phases is obvious in the

evolution of ωp and ΓD. In all cases ΓD exhibits higher

values with N incorporation as compared to the initial

Cr layer. This parameter is closely related to the elec-

trical resistivity and is influenced by the existence of

grain boundaries and defects in the layers. Hence, the

increase of ΓD is attributed to the lower free electron

mobility due to the structural differences in the layers.

Indeed, there are some differences between our layers,

not only compositional but also structural. As shown by

TEM analysis (Fig. 4), by increasing the nitrogen par-

tial pressure the average energy per atom of the grow-

ing film converts the compact stacking of the film (pN
2

= 2×10-4 mbar) over the less dense structure (pN
2
=

3.5×10-4 mbar) to the more porous, columnar structure

(pN
2
= 5×10-4 mbar). Patsalas et al. [25] found that the

ΓD parameter is directly related to the content of voids

in the layer and that ΓD has the lowest value when the

dense, compact structure is obtained, which is attributed

to the elimination of voids.
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Figure 7. The evolution of ωp and ΓD calculated from the
Drude term of the Drude and Drude-Tauc Lorentz model

for different CrxNy layers

Figure 7 also shows an overall decrease of ωp with

increasing nitrogen content in the layers. Changes of ωp

could be directly related to the contribution of different

phases and their metallic character. According to the re-

sults, Cr layer has pure metallic behaviour with the con-

siderable density of conduction electrons (ωp = 24 eV).

In addition, with increasing nitrogen partial pressure to

2×10-4 mbar ωp becomes lower and stays almost con-

stant with further increase of pN
2

to 3.5×10-4 mbar. This

is due to the incorporation of N into the layer, which is

manifested in the formation of Cr2N phase, with some

contribution of Cr and CrN phases. For the nitrogen par-

tial pressure of 5×10-4 mbar the layer exhibits no con-

duction electrons and consequently ωp = 0. This is an

indication of semiconducting character of CrN, since at

this pN
2

value a stoichiometric CrN phase is formed.

3.3. Electrical resistivity

The transport properties of CrxNy’s conduction elec-

trons are better illustrated by the electrical resistivity

measurements, based on the four point probe method.

Figure 8 shows variation of resistivity of the CrxNy films

deposited under different nitrogen partial pressures. The

resistivity of the pure Cr thin film corresponding to

pN
2
= 0 mbar found to be about 58 µΩ cm, is in agree-

ment with the value already reported by Högberg et al.

[26]. When the nitrogen partial pressure is increased to

2×10-4 mbar (the sample S-2) the resistivity becomes

more than two times higher than that of the Cr layer,

reaching a value of 120µΩ cm and stays almost constant

when the nitrogen partial pressure is increased further

up to 3.5×10-4 mbar (the sample S-3). The increasing

trend of the electrical resistivity is due to the increase

of N concentration in the layers which has as a conse-

quence the increase of impurity defects or it may also

be attributed to a decrease of the carrier density due to

the nitrization of Cr. Based on the optical measurements

Figure 8. Variation of resistivity of CrxNy layers as a
function of nitrogen partial pressure during deposition

(Table 2), combined by the XRD results (Fig. 2) the

presence of different phases (Cr, Cr2N and CrN) is es-

tablished in the layers, with the primarily formed Cr2N

phase. Hence, electrical resistivity is higher as com-

pared to the initial Cr film, but still metallic character

is present in the layers [27]. By further increasing the

nitrogen partial pressure to 5×10-4 mbar very high value

of resistivity of 1353µΩ cm is obtained. This clearly

proves semiconducting character of CrN as only CrN

phase grown under given nitrogen partial pressure. Sim-

ilar findings were also reported by Subramanian et al.

[28], who examined the influence of nitrogen flow rates

on the properties of magnetron sputtered CrNx films.

IV. Conclusions

The microstructure, optical and electrical properties

of various CrxNy films grown by DC reactive sputter-

ing were studied. The layers were deposited at sev-

eral values of nitrogen partial pressure ranging from 0

to 5×10-4 mbar. RBS and XRD were employed for the

compositional analysis and phase identification. It was

revealed that at different values of nitrogen partial pres-

sure different phases are obtained: Cr (pN
2
= 0), mixed

Cr + Cr2N + CrN (pN
2
= 2×10-4 and 3.5×10-4 mbar)

or pure CrN (pN
2
= 5×10-4 mbar). TEM has shown

the changes in the morphology of the growing film:

from compact and dense structure observed at pN
2
=

2×10-4 mbar to the well defined columnar structure for

the highest nitrogen pressure. SE analysis was em-

ployed for the optical characterization of the samples.

The results showed that there are well-defined pN
2

re-

gions, where specific phases dominate (Cr, Cr2N, CrN)

and the optical constants n and k are directly determined

by the presence of the growing phase. The layers with

predominantly formed Cr2N phase exhibit metallic be-

haviour, while CrN is a semiconductor.
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